Spectral Studies of Pr³⁺ in Different Solvents

A.H. QUSTI^{*} and A.G.M. AL-SEHEMI^{**} *Department of Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia **Department of Science, Teacher's College, Abha, Saudi Arabia

ABSTRACT. Absorption spectra of Pr^{3+} ion in water (deionized), heavy water, dimethylsulphoxide, hexadeutrodimethylsulphxide, was studied in the UV-Vis. and near IR regions. Judd-Ofelt (T_2 , T_4 , T_6), Slater-Condom (F_2 , F_4 , F_6), Racah (E^1 , E^2 , E^3), and spin-orbit (ζ_4) parameters of Pr^{3+} in the aforementioned media are evaluated. The values of nephelauxetic ratio (β), Sinha's parameter ($\delta \%$) and the bonding parameters ($b^{1/2}$) are also discussed.

Introduction

Since 1962 when the Judd-Ofelt theory was published^[1,2], the spectroscopic properties of tripositive rare-earth ions have been studied extensively, both experimentally and theoretically^[3-10]. Carnal *et al.*^[11] correlated the experimental and theoretical intensities of the solutions bands of Pr^{3+} in the ethyl acetate. Surana *et al.*^[12] have studied the absorption spectrum of Pr^{3+} in haloacetate solution. Lakshman and Buddhudu^[13] reported the Slater-Condon, configuration, spin-orbit, nephelauxetic, bonding, and Judd-Ofelt parameters of Pr^{3+} in the acetates of Praseodymium, Magnesium, Calcium, and Cadmium complexes. Moreover, Buddhudu and Babu^[14] reported the Racah and Judd-Ofelt parameters for Pr^{3+} ion in methyl, butyl, isopropyl and amyl alcohols. In general, semiempirical calculations based on the Judd-Ofelt theory were not satisfactory for the Pr^{3+} ion^[14,15]. In these studies, high root-meansquare deviations of the oscillator strengths and negative values of T_2 are reported. In this work, various spectroscopic parameters have been evaluated from the UV-Vis. bands of Pr^{3+} in different solution media.

Theory

1. Experimental Oscillator Strength

The experimental oscillator strength (P_{exp}) of a band is obtained by

$$P_{\rm exp} = 4. \ |8 \times 10^{-9} \int_{\nu_1} \epsilon(\nu) \, d\nu \tag{1}$$

where $\int \epsilon(\nu) d\nu$ is the area under the corresponding band, $\epsilon(\nu)$ is the molar extinction coefficient defined by :

$$\epsilon = \frac{\ell}{C} \log \frac{I_0}{I} \tag{2}$$

where C is the molar concentration, ℓ is the light path length in (cm), and log I_0/I is the optical density.

2. Judd-Ofelt Parameters

According to the Judd-Ofelt theory^[1,2] the oscillator strength of an induced electric dipole transition is given by :

$$P_{ed} = \nu \sum_{\lambda = 2,4,6} T_{\lambda} (\psi_i J \parallel U^{\lambda} \parallel \psi_f J)^2$$
(3)

where ν is the energy of a $\psi_i \rightarrow \psi_f$ transition, expressed in cm⁻¹, T_λ are the Judd-Ofelt parameters (T_2, T_4, T_6) , and $(\psi_i J \parallel U^{\lambda} \parallel \psi_f J)^2$ are the squares of the reduced matrix elements of the unit tensor operator U^{λ} . Using experimental oscillator strength of the observed bands and the corresponding squared reduced matrix elements, a number of linear equations equal to the number of observed bands are the formed. Employing a least square fit method, the intensity parameters T_2 , T_4 , and T_6 are evaluated. These parameters are then used in equation (3) to calculate the so-called calculated oscillator strength (P_{cal}) .

The root-mean-square deviation (r.m.s.) are calculated using formula :

$$rms = \left[\frac{\Sigma (\Delta J)^2}{N}\right]^{\frac{1}{2}}$$
(4)

where ΔJ is the deviation of the J^{th} -levels and N is the number of fitted levels.

3. Slater-Condon Parameters

To a first approximation, the energy E_j of the *J*-th levels may be expressed in terms^[13] of change in parameters by a Taylor-series expansion :

$$E_J = E_{0J} + \sum_{\kappa = 2,4,6} \frac{dE_J}{dF_k} \Delta F_k + \frac{dE_J}{d\xi_{4f}} \Delta \xi_{4f}$$
(5)

where E_{0J} is the zero-order energy, (dE_J / d_k) and $(dF_J / d\xi_{4f})$ are the partial derivatives. The values of the zero-order energy and the partial derivatives are taken from tables of Wong.^[16] Employing a least-squares fit method, correction factors ΔF_2 , ΔF_4 , ΔF_6 and $\Delta \xi_{4F}$ are obtained. The Slater-Condon (F_2 , F_4 , F_6) and the spin-orbit ($\Delta \xi_{4f}$) parameters are obtained from the relations.^[13]

$$\Delta F_{2} = F_{2} - F_{2}^{0}$$

$$\Delta F_{4} = F_{4} - F_{4}^{0}$$

$$\Delta F_{6} = F_{6} - F_{6}^{0}$$

$$\Delta \xi_{4f} = \xi_{4f} - \xi_{4f}^{0}$$
(6)

where F_2^0 , F_4^0 , F_6^0 and ξ_{4f}^0 are the zero-order parameters.

4. The Racah Parameters

The Racah parameters (E^1, E^2, E^3) are defined^[17,18] by :

$$E^{1} = (70F_{2} + 231F_{4} + 2002F_{6}) / 9$$

$$E^{2} = (F_{2} + 3F_{4} + 7F_{6}) / 9$$

$$E^{3} = (5F_{2} + 6F_{4} - 91F_{6}) / 3$$
(7)

5. Nephelauxetic, Sinha and Bonding Parameters

The nephelauxetic effect observed in the spectra of rare-earths complexes is revealed by shifts in absorption bands toward lower energies. These red-shifts of spectral bands of 4*f*-complexes compared to those of the respective aquas, are may be due to : a reduction in electronic parameters in the 4*f*-complexes, splitting of bands, and their hypersensitivity.^[19] The average nephelauxetic ratio (β) is given^[13] by :

$$\beta = \frac{1}{n} \sum \frac{\nu_c}{\nu_a} \tag{8}$$

where ν_c and ν_a are the wavenumber in cm⁻¹ of 4*f*-4*f* band in complex, and aqueous solutions, respectively and n is the number of observed bands. The nephelauxetic ratio (β) is related to the covalency parameter bonding parameter ($\delta^{(3)}$)^[20] by :

$$\delta \% = \frac{(1-\beta)}{\beta} \times 100$$
⁽⁹⁾

The bonding parameter $(b^{1/2})$ is given^[17] by :

$$b^{1/2} = \left[\frac{1}{2}(1-\beta)\right]^{1/2}$$
(10)

Less than one value of β and positive values of δ % and $b^{1/2}$ indicate that the bonding in complex is more covalent in nature than in aqueous solution.

Experimental

Material used in this study are :

 $Pr(NO_3)_3$ 5H₂O 99.9% (Fluka), PrCl₃6H₂O 99.9% (Aldrich), D₂O, (CH₃)₂ SO, (CD₃)₂ SO, and CH₃ COOH (BDH).

All the UV-VIS absorption spectral bands of Pr^{3+} were recorded with Shimadzu UV-260 spectrophotometer. Optical cells of pathlength of 10 mm were recorded at 25°C.

Results and Discussion

The UV-Vis. absorption bands of Pr^{3+} in H₂O (deionized), D₂O, $(CH_3)_2$ SO, $(CD_3)_2$ SO, and CH_3 COOH, were recorded at 25°C. The four bands observed in the UV-Vis. regions are due to the 4f-4f transitions: ${}^{3}H_4 \rightarrow {}^{1}D_2$, ${}^{3}H_4 \rightarrow {}^{3}P_0$, ${}^{3}H_4 \rightarrow {}^{3}P_1$ (${}^{1}I_6$) and ${}^{3}H_4 \rightarrow {}^{3}P_2$. These bands are shown in Fig. 1. In this figure, the absorption bands of Pr^{3+} in $(CD_3)_2$ SO and D₂O are shown in (a) and (b) respectively. The two spectra are similar except that the shoulder of the ${}^{3}H_4 \rightarrow {}^{1}D_2$ band in D₂O is on the right side while the shoulder of the same band in $(CD_3)_2$ SO is on left side.

FIG. 1. Absorption spectra of Pr^{3+} at room temperature in: (a) $(CD_3)_2$ SO, (b) D_2O .

1. Experimental and Calculated Oscillator Strengths

Experimental oscillator strength $(P_{exp.})$ were obtained using equation (1). The area under the observed curves $[\int \epsilon(\nu) d\nu]$ were determined by weighing method or by a computer program. The results observed from both methods are nearly identical. We determined empirical values for the T_{λ} parameters and use them in equation (3), to determine calculated oscillator strengths (P_{cal}) . For each observed band the values of $P_{exp.}$ and ν are substituted together with corresponding squared reduced matrix element in equation (3). The values of the square reduced matrix elements used to calculate $P_{cal.}$ of Pr^{3+} in D_2O and deionized H_2O , were those of Pr^{3+} (aqua) reported by Carnall. Those used to calculate $P_{cal.}$ for Pr^{3+} bands in $(CH_3)_2$ SO, $(CD_3)_2$ SO and CH₃COOH were those of Pr^{3+} in methyl alcohol reported by Buddhudu^[14]. The values of the square reduced matrix elements of a given lanthanide (Ln^{3+}) are nearly the same in organic and aqueous media. Buddhudu and Babu^[14] have calculated these elements for Pr^{3} in methyl alcohol and have used the same values to calculate $P_{cal.}$ in ethyl, butyl, isopropyl and amylalcohols.

Experimental and calculated oscillator strengths of Pr^{3+} bands in H₂O (deionized), D₂O, (CH₃)₂SO, (CD₃)₂SO and CH₃COOH are listed in Table 1.

	11	643		314.5	Pr ³⁺ in	11	916.8	ere and the second of		
Terms	H ₂ O ^{at BA}		D ₂ O		(CH ₃) ₂ SO		(CD ₃) ₂ SO		CH ₃ COOH	
$^{3}H_{4} \rightarrow$	P _{exp.}	P _{cal.}	P _{exp.}	P _{cal} .	P _{exp.}	P _{cal.}	P _{exp}	P _{cal}	P _{exp.}	P _{cal.}
³ P ₂	19.4	19.0	19.5	19.1	14.9	14.7	17.2	16.8	14.1	13.8
${}^{3}P_{1}({}^{1}I_{6})$	6.51	6.08	9.03	8.66	7.69	7.49	10.2	10.0	4.72	4.10
³ P ₀	2.85	3.38	3.26	3.71	4.02	4.27	5.12	5.33	1.54	1.94
¹ D ₂	3.48	5.17	4.05	5.73	3.36	4.17	4.22	5.01	2.63	3.90
r.m.s. ×10 ⁻⁷	9 8	.67	8	.49	(11)	.17	9/0/0 349/9	.99	6	.51

TABLE 1. Experimental and calculated intensities ($P \times 10^6$) for the observed levels for the Pr^{3+} ion in various media.

In this study, it is found that the experimental oscillator strengths of the observed transitions decrease in the order :

$$\label{eq:P2} \begin{array}{l} {}^{3}\mathrm{P}_{2} \ : \ D_{2}\mathrm{O} > \mathrm{H}_{2}\mathrm{O} > (\mathrm{CD}_{3})_{2} \ \mathrm{SO} > (\mathrm{CH}_{3} \)_{2} \ \mathrm{SO} > \mathrm{CH}_{3}\mathrm{COOH} \\ \\ {}^{3}\mathrm{P}_{1} \ : \ (\mathrm{CD}_{3})_{2} \ \mathrm{SO} > \mathrm{D}_{2}\mathrm{O} > (\mathrm{CH}_{3})_{2} \ \mathrm{SO} > \mathrm{H}_{2}\mathrm{O} > \mathrm{CH}_{3}\mathrm{COOH} \\ \\ {}^{3}\mathrm{P}_{0} \ : \ (\mathrm{CD}_{3})_{2} \ \mathrm{SO} > (\mathrm{CH}_{3})_{2} \ \mathrm{SO} > \mathrm{D}_{2}\mathrm{O} > \mathrm{H}_{2}\mathrm{O} > \mathrm{CH}_{3}\mathrm{COOH} \\ \\ {}^{1}\mathrm{D}_{1} \ : \ (\mathrm{CD}_{3})_{2} \ \mathrm{SO} > \mathrm{D}_{2}\mathrm{O} > \mathrm{H}_{2}\mathrm{O} > (\mathrm{CH}_{3})_{2} \ \mathrm{SO} > \mathrm{CH}_{3}\mathrm{COOH} \end{array}$$

The r.m.s. values shown in Table 1 were calculated according to equation (4). These values are lower than those reported for Pr^{3+} in laser liquids^[6], on the other

hand they are little higher than those reported for Pr^{3+} in acetate complexes solutions^[14] in which seven bands were observed.

2. Judd-Ofelt Parameters

Using P_{exp} for P_{ed} the values of T_2 , T_4 and T_6 parameters were evaluated using equation (3), by a least square fit program. The values of these parameters together with other spectroscopic parameters are presented in Table 2. Our results show that T_2 has negative values for Pr^{3+} in H_2O (deionized), $(CH_3)_2$ SO and CH_3COOH . Negative values of T_2 have been also reported for Pr^{3+} in $CD(C_2H_3O_2)_2$ and $Ca(C_2H_3O_2)_2$, amylalcohol, and $ZrCl_4$ -POCl₃. This behaviour may be due one or more of the following. Strong *f*-*d* mixing, poor resolution method of the overlapped ³*P*-bands, small number of observed or fitted lines, or due to using incorrect values of the reduced matrix elements of Pr^{3+} or due to other reasons.

TABLE 2. Slater-Condon $(F_2, F_4 \text{ and } F_6)$ Rach $(E^1, E^2 \text{ and } E^3)$, spin-orbit (ξ_{4f}) , Judd-Ofelt $(T_2, T_4 \text{ and } T_6)$ parameters and hydrogenic ratio F_4/F_2 and F_6/F_2 Pr³⁺ ion in various media at room temperature.

Parameters	Pr ³⁺ in								
an a	H ₂ O	D ₂ O	(CH ₃) ₂ SO	(CD ₃) ₂ SO	СН ₃ СООН				
F ₂	316.2	316.1	314.5	314.6	314.1				
F 4	60.86	55.90	63.63	63.34	62.07				
F ₆	5.698	5.366	5.833	5.818	5.738				
E ¹	5289	5087	5377	5367	5312				
E ²	19.28	20.66	18.27	18.36	18.67				
E ³	475.8	475.9	474.4	474.5	473.5				
F ₄ /F ₂	0.192	0.177	0.202	0.201	0.198				
F ₆ /F ₂	0.018	0.017	0.019	0.018	0.018				
ξ _{4 f}	743.9	741.1	735.9	735.6	760.5				
$T_{2} \times 10^{9}$	- 7.228	3.486	- 2.337	1.622	- 2.014				
$T_4 \times 10^9$	0.942	1.036	1.196	1.499	0.542				
$T_{6} \times 10^{9}$	5.975	5.975	4.524	5.142	4.384				

3. Other Spectroscopic Parameters

The calculated energies of Pr^{3+} ion in various media have been evaluated according to equation (5) by a least squares fit method. The values of $E_{exp.}$ of observed levels and the values of $E_{exp.}$ and $E_{cal.}$ of Pr^{3+} in different solvents are given in Table 3. The extremely low r.m.s. values indicate excellent agreements between the experimental and calculated energies. The Slater-Condon (F_2, F_4) , spin-orbit (ξ_{4f}) , Racah (E^1, E^2, E^3) parameters and the hydrogenic ratio F_4/F_2 and F_6/F_2 were calculated and are shown in Table 2.

					Pr ³⁺ in			consider the		
Terms	H ₂ O		· D ₂ O		(CH ₃) ₂ SO		(CD ₃) ₂ SO		СН3СООН	
${}^{3}\mathrm{H}_{4}$ \rightarrow	E _{exp.}	E _{cal.}	E _{exp.}	E _{cal.}	E _{exp.}	E _{cal.}	E _{exp.}	E _{cal.}	E _{exp.}	E _{cal.} ·
¹ S ₀		52830	-	51040	• -	53560	-	53470	-	53080
³ P ₂	22522	22522	22520	22520	22411	22411	22410	22410	22502	22502
¹ I ₆	-	22020	-	21730	-	22070	nov prat 1976:Tax ne	22060	С. 16. М. 1 С. 1.	22050
³ P ₁	21340	21340	21350	21350	21240	21240	21240	21240	21304	21304
³ P ₀	20755	20755	20760	20760	20678	20678	20680	20680	20687	20687
¹ D ₂	16966	16966	16970	16670	16829	16829	16840	16840	16892	16892
¹ G ₄	-	10840	$\{(\mathbf{r}_i)\}_{i \in I}$	10270	BV	11110	(), m . }	11070		11070
³ F ₂	0 777 0	4787	्यु अस्मर व ३ - उँग राज	4802	CO.74999	4757	1940,779,948 1949 - 736 - 949	4757	6. (C.0.) 6. (C.0.)	4776
³ F ₃	-	6161	1. <u>1598</u> 	6170	RAY_E.	6115	Cons.M	6115	200 <u>-</u> 407	6185
³ S ₄	0.2	7088	1.18-1.18	6922	South June	7141	1.9.21.3	7132	e <u>ph</u> ard	7164
³ H ₆ .	-	4221	-	4220	- (t	4165	8 -((c))	4164	4 . a	4312
³ H ₅	(1999-1977) 	2040	-	2048	-	2007	-	2007	- (1	2085
³ H ₄	-(8-4)	0	- 198 -	0.	9 <u>-</u> 94	0	CONTRACTOR C. LOS M.	0	2,967 00 3,977 (5)	0
r.m.s.	0.	184	0.	198	0.	252	0.	252	0.	115

TABLE 3. Experimental and calculated energies of the levels for Pr³⁺ ion in various media at room temperature.

4. Nephelauxetic Effect

The nephelauxetic ratio (β), covalency (δ %), and bonding ($b^{1/2}$) parameters of Pr^{3+} in (CH₃)₂ SO, (CD₃)₂ SO and CH₃COOH, are shown in Table 4. All the values of β are less than one and all the values of δ % and $b^{1/2}$ are positive. These results indicate more covalent nature of bonding between Pr^{3+} and the ligand in complexes. The high value of β and the small values of δ % and $b^{1/2}$ in CH₃COOH suggest small participation of the 4f orbitals of Pr^{3+} in bonding. Table 4 also shows, that the δ % and $b^{1/2}$ parameters are in the order :

$$(CH_3)$$
, SO \approx (CD_3) , SO $>$ CH_3COOH

This order seems to be credible because increase of acidity of the solvent shifts the system to less covalent nature since $b^{1/2}$ decreased.

A.H. Qusti and A.G.M. Al-Sehemi

Parameters	Pr ³⁺ ion in:							
ikes area suitu	(CH ₃) ₂ SO	(CD ₃) ₂ SO	CH ₃ COOH					
	0.9947	0.9948	0.9974					
δ(%)	0.5328	0.5227	0.2607					
b ^{1/2}	0.0364	0.0361	0.0255					

TABLE 4. Nephelauxetic effect for Pr^{3+} ion in various media.

References

- [1] Judd, B.R., Phys. Rev. 127: 750 (1962).
- [2] Ofelt, G.S., J. Chem. Phys. 37: 511 (1962).
- [3] Carnall, W.T., Field, P.R. and Rajnak, K., J. Chem. Phys. 49: 4412 (1968).
- [4] Heller, A., J. Mol. Spect., 28: 208 (1968).
- [5] Surann, S.S.L., Mathur, R.C. and Tandon, S.P., J. Phys. C: Solid State Phys., 8: 2323 (1975).
- [6] Lakshman, S.V.J. and Buddhudu, S., J. Quant. Spectrosc. Radiat. Transfer, 24: 251 (1987).
- [7] Qusti, A.H. and Chrysochoos, J., J. Less-Common Metals, 112: 287 (1985).
- [8] Chrysochoos, J. and Qusti. A.H., J. Less-Common Metals, 126: 161 (1986).
- [9] ------ and ------- , J. Less-Common Metals, 148: (1989).
- [10] Ribeiro S.J.L., Massabni, A.M.G. and Berwerth Stucchi, E., Inorg. Chim. Acta, 179: 67 (1991).
- [11] Carnall, W.T., Fields, P.R. and Wybourne, B.G., J. Chem. Phys., 42: 3797 (1965).
- [12] Surana, S.S.L., Singh, M. and Misra, S.N., J. Inorg. Nucl. Chem., 42: 61 (1980).
- [13] Lakshman, S.V.J. and Buddhudu, S., Polyhedron, 2: 403 (1983).
- [14] Buddhudu, S. and Babu, V.R., J. Quant. Spectrosc. Radiat. Transfer, 37: 415 (1987).
- [15] Weber, M.J., Phys. Rev., 157: 262 (1967).
- [16] Wong, E.Y., J. Chem. Phys., 38: 976 (1963).
- [17] Hufner, S., Optical Spectra of Transparent Rare Earth Compounds, Academic Press, New York (1978).
- [18] Lakshman, S.V.J. and Jayasankar, C.K., Proc. Indian Notlsei, Acad., 48: 642 (1978).
- [19] Sinha, P., Spectrochim. Acta, 22: 57 (1966).

دراسات طيفية لأيون +Pr³⁺ في مذيبات مختلفة

المستخلص . تم بعون الله تعالى دراسة طيف الامتصاص لأيون ⁺² P في P₂ (في الحالة الحرة ، P₂O ، D₂O ، CH₃COOH ، (CH₃)₂SO ، CD₂O وذلك في المنطقة المرئية – فوق البنفسجية (.UV-Vis) والقريبة من تحت الحمراء (IR) . ولقد تم تعيين قيم المتغيرات (البارامترات) الطيفية (.UV-Vis) ، (F₂, F₄, F₆) ، (E¹, E², E³) و ₄₄ ، في المذيبات السابقة الذكر . كما تمت مناقشة متغيرات الربط 8,% β