Aziridination of Chalcones with Chiral and Achiral 3-Acetoxyaminoquinazolin-4 (3H)-Ones

Hassan A. Albar
Chemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract

Aziridination of monobenzal- and dibenzalacetone by 3-aceto-xyaminoquinazolin-4 (3 H)-ones (AAQs) $\mathbf{1 x}$ yielded aziridinyl ketone $\mathbf{2 x}$ and bis-aziridinyl ketones $\mathbf{3 x}$, respectively. The relative configuration of bisaziridinyl ketone 3b was determined by x-ray crystallography. Bis-aziridinyl ketone $\mathbf{5 b}$ was obtained as a single diastereomer from aziridination of spiro-2aziridino -6-benzalcyclohexanone $\mathbf{4 a}$ with AAQ $\mathbf{1 k}$ by what appears to be kinetic resolution.

Introduction

3-Acetoxyaminoquinalin-4 (3H)-ones (AAQs) 1x are aziridinating agents for alkenes including α, β-unsaturated esters and ketones ${ }^{[1-3]}$. The presence of a chiral substituent in the 2-position of the quinazolinone ring can give rise to high diastereoselectivity in aziridination of prochiral alkenes (reagent-controlled diastereoselectivity) ${ }^{[4]}$. On the other hand high diastereoselectivity is also obtained using achiral AAQs and chiral alkenes e.g. cyclohex-2-enol ${ }^{[5]}$ and cyclohexe-3-enol ${ }^{[6]}$ (substrate-controlled diastereoselectivity). We have recently reported that bis-aziridination of 2,6-dibenzalcyclohexane with AAQs and 1,3-dipolar cycloaddition to spiro 2-aziridino-6-benzalcyclohexanone proceed with complete substrate-controlled diastereoselectivity ${ }^{[7]}$.

In this paper we report the results of aziridination of mono- and of dibenzalacetone with chiral and achiral AAQs $\mathbf{1 x}$ and the aziridination of spiro-2-aziridino-6-cyclohexanones $\mathbf{4 a - c}$ with enantiomerically pure AAQ $\mathbf{1 k}$.

Experimental

All melting points are uncorrected. Infrared spectra (KBr) were measured on a PerkinElmer 298 spectrophotometer or on a Nicolet Magna 520 FT-IR spectrophotometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained in deuteriochloroform on a Varian DPX-400 FTNMR spectrometer using tetramethylsilane as internal reference. Microanalyses were
performed on a 2400 Perkin Elmer Series 2 CHNS analyser in King Abdulaziz University, Jeddah. Standard MS were recorded on either a Micromass 16B spectrometer or a Kratos 'concept' 1H. Accurate mass measurements were made on the latter at Leicester University. All aziridine derivatives were synthesised by general method as described in the ref. [7]. The prepared aziridines gave accurate mass and the ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR data for most of the prepared aziridines $\mathbf{2 a} \mathbf{- f}$ and $\mathbf{2 g}$ - \mathbf{j} recorded in Tables 1 and 2 , respectively.

Table 1. ${ }^{1} \mathrm{H}$ NMR spectral data of Aziridines 2a-c and 2d-f.

	2a	2b	2 c	2d	2 e	2 f
$\mathrm{CH}_{3} \mathrm{CO}$	2.36	2.38, s	2.38, s	2.55, s	2.55, s	2.53, s
CH_{3}	2.53	$1.37 \mathrm{t}, \mathrm{J}=7$	-	2.47, s	$1.25 \mathrm{t}, \mathrm{J}=7$	-
CH_{2}	-	2.95q, J = 7	-	-	$2.82 \mathrm{q}, \mathrm{J}=7$	-
$(\mathrm{CH} 3)_{2} \mathrm{CH}$	-	-	$1.37, \mathrm{~d}, \mathrm{~J}=6.6$	-	-	$1.35, \mathrm{~d}, \mathrm{~J}=6.6$
	-	-	$1.43, \mathrm{~d}, \mathrm{~J}=6.6$	-	-	$1.41, \mathrm{~d}, \mathrm{~J}=6.6$
$\left(\mathrm{CH}_{3}\right) \mathrm{CH}$	-	-	$3.63, \mathrm{~m}, \mathrm{~J}=6.6$	-	-	$3.68, \mathrm{~m}, \mathrm{~J}=6.6$
$\mathrm{CH}_{\mathrm{x}}-\mathrm{CH}$	$2.85 \mathrm{dd}, \mathrm{J}=1,5$	$2.82 *$	2.88, dd, J = 1,5	$3.94 \mathrm{~d}, \mathrm{~J}=4.4$	$3.93 \mathrm{~d}, \mathrm{~J}=4.4$	$3.93 \mathrm{~d}, \mathrm{~J}=4.4$
	$3.12 \mathrm{dd}, \mathrm{J}=1,8$	$3.04 *$	3.18, dd, J = 1,8			
$\mathrm{CH}_{\mathrm{x}}-\mathrm{CH}$	3.74 dd , $\mathrm{J}=5,8$	$3.53 \mathrm{dd}, \mathrm{J}=5,8$	3.74, dd, J = 5,8	$3.96 \mathrm{~d}, \mathrm{~J}=4.4$	3.95d, J = 4.4	$3.97 \mathrm{~d}, \mathrm{~J}=4.4$
8-H	7.41 m	7.43 m	7.43, m	$7.41^{+} \mathrm{m}$	$7.42^{+} \mathrm{m}$	$7.41^{+} \mathrm{m}$
6-H, 7-H	7.70 m	7.74, m	7.70, m	7.70, m	7.70, m	7.70, m
5-H	$8.16 \mathrm{~d}, \mathrm{~J}=6$	8.18d, J = 6	8.16, d, J = 6	8.14, d, J = 6	8.14, d, J = 6	8.14, d, J = 6
$\mathrm{C}_{6} \mathrm{H}_{5}$	-	-	-	$7.41^{+} \mathrm{m}$	$7.42^{+} \mathrm{m}$	$7.41^{+} \mathrm{m}$

*: Overlaps signals; $\mathrm{x}=2$ for aziridines $2 \mathrm{a}-\mathrm{c}$ and $\mathrm{x}=1$ for aziridines $2 \mathrm{~d}-\mathrm{f} ; \mathrm{J}(\mathrm{Hz}) ;+$: Overlap signals
Table 2. ${ }^{1} \mathrm{H}$ NMR spectral data of Arizidines $\mathbf{2 g}$ - \mathbf{j}.

	$\mathbf{2 g}$	$\mathbf{2 h}$	$\mathbf{2 i}$	$\mathbf{2 j}$
CH^{3}	2.59	$1.16 \mathrm{t}, \mathrm{J}=7$	-	$1.06^{\mathrm{S}}, \mathrm{s}$
CH^{2}	-	$2.79 \mathrm{q}, \mathrm{J}=7$	-	$2.45 \mathrm{~d}^{+}, \mathrm{J}=14$
				$2.28 \mathrm{~d}^{+}, \mathrm{J}=14$
$\left(\underline{\mathrm{CH}}_{3}\right)^{2} \mathrm{CH}$	-	-	$1.21, \mathrm{~d}, \mathrm{~J}=6.6$	-
	-	-	$1.43, \mathrm{~d}, \mathrm{~J}=6.6$	-
$\left(\mathrm{CH}_{3}\right) \mathrm{CH}$	-	-	$3.36, \mathrm{~m}, \mathrm{~J}=6.6$	-
$\underline{\mathrm{CH}-\mathrm{CH}}$	$4.18 \mathrm{~d}, \mathrm{~J}=4.4$	$4.20 \mathrm{~d}, \mathrm{~J}=4.4$	$4.18, \mathrm{~d}, \mathrm{~J}=4.4$	$3.94 \mathrm{~d}, \mathrm{~J}=4.4$
$\mathrm{CH}-\mathrm{CH}$	$4.24 \mathrm{~d}, \mathrm{~J}=4.4$	$4.27 \mathrm{~d}, \mathrm{~J}=4.4$	$4.28, \mathrm{~d}, \mathrm{~J}=4.4$	$3.96 \mathrm{~d}, \mathrm{~J}=4.4$
$5-\mathrm{H}$	$8.14 \mathrm{~d}, \mathrm{~J}=6$	$8.10 \mathrm{~d}, \mathrm{~J}=6$	$8.11 \mathrm{~d}, \mathrm{~J}=6$	$8.14, \mathrm{~d}, \mathrm{~J}=6$
$2 \mathrm{C}_{6} \mathrm{H}_{5}^{\#}$	$7.03-7.75 \mathrm{~m}$	$7.01-7.76 \mathrm{~m}$	$7.01-7.82 \mathrm{~m}$	$7.01-7.76 \mathrm{~m}$

[^0]5b: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCL}_{3}\right) \delta: 1.40(3 \mathrm{~h}, \mathrm{~d}, \mathrm{~J}=66.6 \mathrm{~Hz},[\mathrm{CH}(\mathrm{OH}) \mathrm{Me}]), 2.20(6 \mathrm{H}, \mathrm{m}$, $\left.\left(\mathrm{CH}_{2}\right)_{3}\right), 2.48(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.17 \& 4.08(2 \times 1 \mathrm{H}, \mathrm{s}, 2 \mathrm{x}$ aziridine ring proton $), 4.53(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=6 \mathrm{~Hz},[\mathrm{CH}(\mathrm{OH}) \mathrm{Me}], 4.92(1 \mathrm{H}$, quintet, $\mathrm{J}=6 \mathrm{~Hz},[\mathrm{CH}(\mathrm{OH}) \mathrm{Me}], 7.53(16 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-$ $\mathrm{H})$ and 8.10 and $8.15(2 \times 1 \mathrm{H}, 2 \mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \times 5-\mathrm{H}$ in the quinazolinone ring $) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 22.8$ and $23.2\left(2 \mathrm{CH}_{3}\right), 18.4$ and $27.8\left(3 \mathrm{CH}_{2}\right), 56.9$ and $57.2(2$ spiro carbon, do not appeared in the DEPT technique), 62.6 and $64.2(2 \mathrm{CH}), 159.2$ and 159.3 (2CON) and 188.0 (CO).

X-ray Crystallography Data for $3 \boldsymbol{h}$

$\mathrm{C}_{37} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{3}, \mathrm{M}=610.7$, monoclinic, space group $\mathrm{C} 2 / \mathrm{C}, \mathrm{a}=17.542(4), \mathrm{b}=16,165$ (4), $c=12.412(3) \AA, \beta=120.54(2)^{\circ}, V=3031.4(13) \AA^{3}$ (By least squares refinement on diffractometre angles for 32 centred reflections in the rang $2.52<\theta<24.00^{\circ}$), $z=4, D \in$ $=1.338 \mathrm{Mg} / \mathrm{m}^{3}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=0.087 \mathrm{~mm}^{-1}$ colourless block (from ethanol), crystal dimensions $0.53 \times 0.26 \times 0.18 \mathrm{~mm}$.

Data collection and processing: Data were measured on Siemens P4 diffractometre at 190 K using graphite monochromated Mo-K α radiation $[\lambda=0.71073 \AA$] using an ω scan technique. Three standard reflection monitored every 100 scans showed no significant variation in intensity, the reflections were corrected for Lorentz and polarisation effects 2860 data were measured ($2.52<\theta<24.00^{\circ}$), with 2388 independent reflections (merging $\mathrm{R}_{\text {int }}=0.0274$) and 2388 having [$\mathrm{I}>2 \sigma(\mathrm{I})$ regarded as observed.

Structure solution and refinement: The structures were solved by direct methods using the program SHELXTL-PC ${ }^{[8]}$ and refined by full-matrix least-squares on F^{2} using the program SHELXL93 ${ }^{[9]}$. All hydrogen atoms were included in calculated positions $(\mathrm{C}-\mathrm{H}=0.96 \AA)$ using a riding model. All non-hydrogen atoms were refined with anisotropic displacement parameters. Full-matrix least-squares based on F^{2} gave R1 = $0.0850, \omega \mathrm{R} 2=0.1153$ for all data, for 209 parametres (R factors defined in Ref. 7), weighing scheme $\omega=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.096 P)^{2}+1.63 P\right]$ where $P=\left[\max .\left(F_{0}^{2}, 0\right)+\right.$ $\left.2 F_{c}^{2}\right] / 3, \mathrm{GOF}=1.039$. The maximum and minimum electron densities in the final $\Delta \mathrm{F}$ map were 0.200 and $-0.485 \mathrm{e}^{\AA^{-3}}$.

X-ray Crystallography data for $4 a_{1}$ and $\mathbf{4 a}_{\mathbf{2}}$

$\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3}, \mathrm{M}=477.55$, monoclinic, space group $\mathrm{P} 1, \mathrm{a}=9.896(1), \mathrm{b}=10,811(2), \mathrm{c}$ $=12.524(2) \AA, \alpha=111.38(3)^{\circ}, \beta=104.23(2)^{\circ}, \gamma=90.90(1)^{\circ}, \mathrm{V}=1201.1(5) \AA^{3}$ (By least squares refinement on diffractometre angles for 32 centred reflections in the rang $\left.2.78<\theta<23.50^{\circ}\right), \mathrm{z}=5, \mathrm{D} \varepsilon=1.320 \mathrm{Mg} / \mathrm{m}^{3}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=0.086 \mathrm{~mm}^{-1}$ colourless block (from ethanol), crystal dimensions $0.44 \times 0.14 \times 0.13 \mathrm{~mm}$.

Data collection and processing: Data were collected and processed as for 3h. 3878 data were measured ($2.78<\theta<23.50^{\circ}$), with 3876 independent reflections (merging $\left.\mathrm{R}_{\text {int }}=0.0000\right)$ and 3876 having $[\mathrm{I}>2 \sigma(\mathrm{I})]$ regarded as observed.

Structure solution and refinement: The structures were solved using same method as 3h. Full-matrix least-squares based on F^{2} gave $\mathrm{R} 1=0.0790, \omega \mathrm{R} 2=0.1729$ for all
data, for 328 parameters (R factors defined in Ref. [7]), weighing scheme $\omega=1$ / [σ^{2} $\left.\left(F_{0}^{2}\right)+(0.065 P)^{2}+1.39 P\right]$ where $\left.P=\left[\max . F_{0}^{2}, 0\right)+2 F_{c}^{2}\right] / 3$, GOF $=1.016$. The maximum and minimum electron densities in the final $\Delta \mathrm{F}$ map were 0.337 and $-0.336 \mathrm{e}^{-3}$.

Result and Discussion

Reactions of AAQs (1a-c) prepared in dichloromethane solution by lead tetra-acetate oxidation of the corresponding 3 -aminoquinazolinones at $-20^{\circ} \mathrm{C}$, with methyl vinyl ketone and with benzalacetone gave the corresponding aziridines 2a-c and 2d-f, respectively, in good yields (Scheme 1). The ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) data of aziridine derivatives 2a-c summarized in Table 1.

2d-f

Scheme 1
Similarly, the reaction of $\mathbf{1 a - c}$ and $\mathbf{1 k}$ with dibenzalacetone afforded aziridines $\mathbf{2 g - 1}$ and $\mathbf{2 j}$ respectively, in good yield. For example, for aziridine $2 \mathrm{~g}: \mathrm{MS}(\mathrm{FAB}) \mathrm{M}^{+}+1$, 408; for aziridine $\mathbf{2 i}$: MS (FAB) $\mathrm{M}^{+}+1,436$; Acc. Mass Found $\mathrm{M}^{+} 436.2025$, $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2}$, Calc. M^{+}436.2025. The ${ }^{1} \mathrm{H}$ NMR data for aziridine derivatives 2 g -i and $\mathbf{2 j}$ summarized in Table 2.

The enantiomerically pure $\mathbf{1 k}$ reacts with dibenzalacetone to afford a pair of diastereosomers $\mathbf{2}_{\mathbf{1}} \mathbf{k}$ and $\mathbf{2}_{\mathbf{2}} \mathbf{k}$ in 6:4 ratio: when this aziridination was repeated in the presence of $\mathrm{Ti}(\mathrm{IV})$-tert-butoxide ${ }^{[4]}$, the ratio of these diastereoisomers was changed to $9: 1$ (yield 35\%) (Scheme 1).

Further aziridination of the remaining double bond in aziridines $\mathbf{2 g}$-j byAAQs 1a-c and $\mathbf{1 j}$ afforded the corresponding diaziridinyl ketones $\mathbf{3 g}$ - \mathbf{j}. The latter aziridines were also synthesised by aziridination of dibenzalacetone ($1 \mathbf{m o l}$ equiv.) with AAQ $\mathbf{1 a - c}, \mathbf{j}$ (2 mol. equiv.) as shown in Scheme 2. For example, aziridine 3h : MS (FAB) $\mathrm{M}^{+}+1,608$; Acc. Mass Found $\mathrm{M}^{+} 609.2614, \mathrm{C}_{37} \mathrm{H}_{33} \mathrm{~N}_{6} \mathrm{O}_{3}$, Calc. $\mathrm{M}^{+} 609.2614 ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 1.22\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.79\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.83$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.4 \mathrm{~Hz}, \mathrm{CH}), 4.52(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.4 \mathrm{~Hz}, \mathrm{CH}), 7.51(16 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$ and $7.98(2 \times$ $1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \times 5-\mathrm{H}$ of the quinazolinone ring); ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDC}_{13}$) : δ 10.5 and $10.7\left(2 \underline{\mathrm{CH}}_{3}\right), 27.7$ and $27.8\left(2 \underline{\mathrm{CH}}_{2}\right), 54.5$ and $56.7(2 \underline{\mathrm{CH}}), 155.8$ and 159.2 (2드N-) and 184.4 (드). Aziridine $\mathbf{3 j}$: MS (FAB) $\mathrm{M}^{+}=1,693$; Acc. Mass Found M^{+} 693.3553, $\mathrm{C}_{43} \mathrm{H}_{45} \mathrm{~N}_{6} \mathrm{O}_{3}$, Cald. $\mathrm{M}^{+} 693.3554$. The structure and relative configuration of the diaziridinyl ketone $\mathbf{3 h}$ was confirmed by x-ray crystallography (Fig. 1).

1x $: \mathbf{R}=\mathbf{1 a}: \mathbf{M e}, \mathbf{1 b}: E t, 1 c: P r, 15: \mathbf{B u C H}_{2}, \mathbf{1 k}: \mathrm{CH}(\mathrm{OH}) \mathrm{Me}$

3x: R, $\mathbf{R}^{\prime}=\mathbf{3 g}: \mathrm{Me} ; \mathbf{3 h}: \mathrm{Et} ; \mathbf{3 i}:{ }^{\prime} \mathrm{Pr} ; \mathbf{3 j}:{ }^{\mathbf{t}} \mathrm{BuCH} ; \mathbf{3 k}: \mathrm{CH}(\mathrm{OH}) \mathrm{Me} ; \mathbf{3 h k}: \mathrm{Et}, \mathrm{CH}(\mathrm{OH}) \mathrm{Me}$.

Scheme 2
It is clear, therefore, that the first aziridination ring introduced has a directing effect on which diastereoface of the residual α, β-unsaturated ketone is aziridinated ketone is aziridinated by the AAQ. The sense of diastereoselectivity is in agreement with attack on the conformation shown in Fig. 2 and supports the trans-configuration assigned to the spiro-2,6-bis aziridinocyclohexanone \mathbf{x} prepared previously ${ }^{[7]}$.

Reaction of the double bond in racemic aziridine $\mathbf{2 h}$ with enantiomerically pure $\mathbf{1 k}$ gave bis-aziridinoketone apparently as a single diastereoisomer 3hk. The unreacted azirdinyl ketone $\mathbf{2 h}$ in this aziridination should be enriched in one enantiomeric form i.e. kinetic resolution could have occurred and this point is under investigation.

FIG. 1. X-ray crystal structure of aziridine $\mathbf{3 h}$.

\mathbf{X}

Fig. 2.

$4 a_{1} \& 4 a_{2}$

Scheme 3
Aziridination of 2,6-dibenzalcyclohexanone with $\mathbf{1 k}$ gave two enantiopure diastereoisomers $\mathbf{4} \mathbf{a}_{\mathbf{1}}$ and $\mathbf{4} \mathbf{a}_{\mathbf{2}}$ in a 6:4 ratio in moderate yield, [mp 173-174 ${ }^{\circ} \mathrm{C}$, yield 58% Acc. Mass Found : $\mathrm{M}^{+} 477.2053, \mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3}$, Calc. $\mathrm{M}^{+} 477.2053$] (Scheme 3). The ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})$ spectrum of $\mathbf{4} \mathbf{a}_{\mathbf{1}}$ showed a doublet for the $[\mathrm{CH}(\mathrm{OH}) \mathrm{Me}]$ at $\delta 1.33$, a singlet for the aziridine ring proton at $\delta 4.47$, a doublet for $\mathrm{CH}(\mathrm{OH}) \mathrm{Me}$ at $\delta 4.64$ and a quintet for $\mathrm{CH}(\mathrm{OH}) \mathrm{Me}$ at $\delta 4.95$. In $\mathbf{4 a}_{2}$, the corresponding signals were at $\delta 1.57[\mathrm{CH}$ $(\mathrm{OH}) \mathrm{Me}], \delta 4.47$ (aziridine ring H) and $\delta 4.75[\mathrm{CH}(\mathrm{OH}) \mathrm{Me}$, (broad signal)]. The major diastereoisomer, $\mathbf{4 a _ { 1 }}$ was isolated ($\sim 90 \%$ pure), (Scheme 3): X-ray crystallography on a single crystal from this mixture shows the presence of both SSS and SRR enantiopure diastereomers, $\mathbf{4} \mathbf{a}_{1}$ and $\mathbf{4} \mathbf{a}_{\mathbf{2}}$ as shown in Fig. 3.

Aziridination of spiro 2-aziridino-6-benzalcyclohexanones $\mathbf{4 a}$ and $\mathbf{4 b}$ with the enantiomerically pure 3 -acetoxyaminoquinazoline $\mathbf{1 k}$ yield $\mathbf{5 a}$ and $\mathbf{5 b}$ respectively (Scheme 4) which appear to be single diastereoisomers : 5b has $[\alpha]_{20}^{\mathrm{CHCl}_{3}}=96^{\circ}$ at $\lambda=589 \mathrm{~nm}$, $[\alpha]_{20}^{\mathrm{CHCl}_{3}}=100^{\circ}$ at $\lambda=578 \mathrm{~nm},[\alpha]_{20}^{\mathrm{CHCl}_{3}}=121.5^{\circ}$ at $\lambda=546 \mathrm{~nm},[\alpha]_{20}^{\mathrm{CHCl}_{3}}=311^{\circ}$ at λ $=436 \mathrm{~nm},[\alpha]_{20}^{\mathrm{CHCl}_{3}}=1286.5^{\circ}$ at $\lambda=365 \mathrm{~nm}$.

Reduction of 2-aziridino-6-benzalcyclohexanone $4 \mathbf{c}^{[7]}$ by sodium borohydrite in an ethanol-water mixture for 3 hours at room temperature gave the corresponding cyclohexanol $6 \mathbf{c}$ in good yield, $\left[\mathrm{MS}(\mathrm{FAB}):\left[\mathrm{M}^{+}=1\right]=464\right.$ (35\%); (EI) : m/z(\%), $463\left(\mathrm{M}^{+}\right.$, 65)] as shown in Scheme 4. As in the bis-aziridine above, attack of hydride appears to be from one face of the carbonyl group since alcohol, $\mathbf{6 c}$ is a diastereoisomer. The X-ray crystal structures of $\mathbf{4} \mathbf{c}^{[7]}$ strongly suggests that attack of hydride on the carbonyl group will be opposed to the aziridine ring and that the relative configuration of alcohol $\mathbf{6 c}$ should be as shown above.

Fig. 3. X-ray crystal structure of mixture of enantiopure diastereomers $\mathbf{4} \mathbf{a}_{\mathbf{1}}$ and $\mathbf{4} \mathbf{a}_{\mathbf{2}}$.

1k

+ enantiopure of 4 a and $\mathbf{4 b}$
5a: $\mathrm{R}=(\mathrm{S})-\mathrm{CH}(\mathrm{OH}) \mathrm{Me}$
$5 \mathrm{~b}: \mathrm{R}=\mathrm{Me}$

One diastereolsomer in racemiate form $6 \mathbf{c}: \mathbf{R}=\mathrm{Et}$

Scheme 4

Acknowledgements: I would like to thank Dr. Robert S. Atkinson for his help in this work and Drs J. Fawcett and D.R. Russell for the X-ray data, and the University of Leicester (UK) and KACST (Saudi Arabia) for support.

References

[1] Atkison, R.S., Barker, E. and Ulukanli, S., J. Chem. Soc., Perkin Trans. 1: 583 (1998); Atkinson, R.S., Barker, E., Meades, C.K. and Albar, H.A., Chem. Commun. 29 (1998).
[2] Atkinson, R.S. and Barker, E., J. Chem. Soc., Chem. Commun., 819 (1995); Atkinson, R.S., Coogan, M.P. and Cornell, C.L., J. Chem. Soc., Perkin Trans. 1: 157 (1996).
[3] Atkinson, R.S., Fawcett, J., Russell, D.R. and Williams, P.J., Tetrahedron Letters, 36: 3241 (1995); Atkinson, R.S., Barker, E., Edwards, P.J. and Thomson, G.A., J. Chem. Soc., Perkin Trans. 1: 1533 (1955).
[4] Atkinson, R.S., Gattrell, W.T., Aycough, A.P. and Raynham, T.M., Chem. Commиn., 1935 (1995).
[5] Atkinson, R.S., Kelly, B.J., J. Chem. Soc. Perkin Trans. 1: 1515 (1989).
[6] Atkinson, R.S., Kelly, B.T. and McNicholas, C., Chem. Commun. 562 (1989).
[7] Albar, H.A., Fawcett, J. and Russell, D.R., Heterocycles, 45: 1289 (1977).
[8] Shelddrick, G.M., SHELXTL-PC, Release 4.2, Siemens Analytical X-Ray Instruments, Madison, WI, (1991).
[9] Sheldrick, G.M., SHELX-93, Program for Crystal Structure Refinement, University of Gottingen (1993).

أزيردة الشالكونات باستخدام مركبات الكيرالية وغير الكير الية من 3-أسيتو كسي أمينو كوينازولين-4(3H)-أون

حسن بن عبد القادر بن حسن البار
قسم الكيمياء، كلية العلوم، جامعة الملك عبد الـد العزيز
جــــــة - الململكة العربية السعودية

$$
\begin{aligned}
& \text {. } 1 \text { (3H) }
\end{aligned}
$$

[^0]: * : Overlap signals; $\mathrm{J}(\mathrm{Hz})$; \# : Overlap with the 6-H \& 7-H \& 8-H of the quinazolinone ring and $-\mathrm{CO}-\mathrm{CH}=\mathrm{CH} \underline{\mathrm{H}}-\mathbf{\$}$
 : Three methyl groups (9H); + : Diasterotopic protons.

