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Symbolic Computing Algorithm for One-Point Iteration
Formulae of Integral Orders for the Solution of y(x) =0
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Makkah Al-Mukarramah, Saudi Arabia

AsstrACT. Symbolic computing algorithm for a class of one-point
iteration formulae of integral orders was established to solve y(x) = 0.
Mathematica software was used to obtain literal analytical expressions
of iterative schemes of some orders together with their error formulae
as illustration of the symbolic implementation of the algorithm. A nu-
merical application is also given.

Introduction

One of the most basic problems of numerical approximation is the root-finding
problem, which involves finding a root x of an equation of the form

yx) =0 (1.1)

This is one of the oldest known approximation problems, towards its research
continues in this area at present time.

This problem is usually solved by iterative methods, which in turn need (a)
an iterative scheme, and (b) starting value. In fact, these two points are not sep-
arated from each other, but there is a full agreement that, even accurate iterative
schemes are extremely sensitive to starting value. Moreover, in many cases the
starting value leads to drastic situations between divergent and very slow con-
vergent solutions.

Since 1990[!], in the field of numerical analysis, very powerful techniques
have been devoted up to now; to solve transcendental equation(s) without any
prior knowledge of the starting value. These techniques are known today as
continuation methods, in which one defines a homotopy or deformation and at-
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tempt to trace an implicitly parameterized curve(s), so that the problem reduces
to a parametric optimization which could be solved by embedding methods.

What concerns the present paper is the second point that is of the iterative
scheme. Before constructing an iterative scheme for solving Equation (1.1),
some basic assumptions and definitions are to be recalled as follows.

Assumptions

Let y(x) = 0 has a solution x = a. We assume that there is an interval / con-
taining the point x = a such that

e Y(x) #0 , Uxel

« yis differentiable in / as many as we need,

 All the arguments of y(x) lie in /.

Definitions
« The error in the n'" iteration is defined as

g, = 0-x,

n
o Ifthe sequence {x,}, converges tox = a, then
lim x, = a
n— o
o If there exists a real number p with p > 1 such that
. X1 —a . E; .
lim [E7S il = lim €11 = Kk with £ %0
7 — |x,<—a|p AN |£l‘|p

we say that the convergence of the method is of order p at a. The constant K is
called the asymptotic error constant and it depends on y(x), for p = 1 the con-
vergence is linear, for p = 2, is quadratic, for p = 3,4,5 is cubic, quartic and-
quintic respectively.

» One-point iteration formulae are those which use information at only one
point.

In the present paper we shall consider stationary one-point iteration formulae
which have the form

Xpo1=F(x) with i=0,1,.. (1.2)

Theorem

It could be shown that the order of any one-point iteration function F(x) is a
positive integer[z]. More specifically F(x) has order p if and only if F(a) = a;
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and
FD@ =0, 1<j0p and FP)(a)+0.

An iterative scheme for solving y(x) = 0 includes derivatives of y as much as
the order of the scheme (Equation 2.14). In fact, as it is clear from the above
definitions, the higher the order of an iterative scheme, the higher its accuracy
and rate of convergence will be. Consequently, higher accuracy needs iterative
schemes containing higher derivatives. In the near past, this was very difficult
or even impossible to include in an iterative scheme more than the third de-
rivative. Today, due to the existing symbolic software such as Mathematica, one
can generate derivatives of any order as desired whatever the function is.

Due to the importance of root finding problem with high accuracy and the
existing symbols used for manipulating digital computer programs I tried to es-
tablish symbolic computing algorithm for a class of one-point iteration formulae
of integral orders to solve y(x) = 0.

Formulation of the Method
This section is devoted for developing a class of one-point iteration formulae
referred to in the first section. To do so, we shall make use of series reversion
algorithm.
Series Reversion Algorithm
Consider the functional equation
n={+Be(n); [BILL, 2.1

Then according to Lagrange expansion theoremP], we have

~ 00 ﬁ” 71—1 B
n=0+y B L 1w (22)
24 &

Let y(x) be a function which can be expanded in a Taylor series in the neigh-
borhood of x =X, as

HAx)=pp + Z 7/ (r—x0)/ (2.3)
Vol
where
_ &/ ()

In the following, we assume that B| # 0 and write Equation (2.3) in the form
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x =X+ (v~ o) 4). (2.4)
where ¢(x) is defined by
X) =
o) ORI TR

Since Equation (2.4) is of the form (2.1), we can express x as a power series
ina=y-y,to get

(2.5)

x(y) = Xo+z (J/ )" (2.6)
where
2" 7
Cy= T [A(D)]5= (2.7)

And ¢x) is defined by Equation (2.5). The series for x(y) is said to be the re-
verse of the series for y(x).

Battin!*] developed an elegant algorithm to express n of the coefficients Ci,
C,, ... of the reversed series in terms of the coefficients By, B,, ... of the original
series. The basic equations of this algorithm are

Db =y =00 (x0) = ¥ -—1 28.1)

ya K
_”'d)‘y) = g :_%z l+1( )8 450 £=1200-1 282)

7 = o
o ==l =ny (f I)Df L) (2.8.3)
dx =
J
Cy=D1, ¥=1 (2.8.4)
One-Point Iteration Formulae

Consider the equation

y(x)=0 (2.9)
Recalling Equation (2.6) with remainder as
m+1 . 2
=-n) (/=/)
r(y)=x+ z ¥ C(ro) + NS Cpa(d) (2.10)

J=1
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Where { is between y and y,. If a'is a root of Equation (2.9), then Equation
(2.10) with x = ar and y = 0 gives

m+l +2  m+2
A )2
a=ux + /z_l (—1)/ / C (j/ ) (m+2)| Cm+2(Z) (21 1)

Therefore, if y, is a relatively small quantity (or, equivalently, x, is rea-
sonably close to @) and the coefficients C;, C,, ..., are “well behaved”, then
Equation (2.11) will provide an approximation to the true value of the root .

Equation (2.11) can be used recursively in the form

m+l  (_ / . 2 it
o=x+ zl (/') WO + (lzmTy)ll CmaQ)  (2.12)
J= ' ’

from which it is deduced the iterative formula

mt+1 _1/
Xpp =A% z ( )

7 Cix,) with 7=0,1,... (2.13)

Subtracting this Equation (2.13) from Equation (2.12), we get

_\7t2
ey M Gral@)

A+

Since
yvi=Ax) = a—€;)=a)—€,)'((1)=-€,'1)

where { | between x; and a, we have

2 2
g1 = — A EN" Gra@}e” 2.14)
(m +2)'
Equations (2.13) and (2.14) are what we required to set up for the one-point
iteration formulae for solving y(x) = 0.

Note that, if the root is simple, the term in brackets in Equation (2.14) is
bounded in some neighborhood of a. Therefore the order of the iterative for-
mula (2.13) is m + 2, and if the starting value is sufficiently good, the iterative
method will converge.

Although any of the formulae of a given order is directly obtained as par-
ticular case of Equation (2.13), the applications of the corresponding error for-
mulae (Equation 2.14) need some explanations as illustrated by the following
example:
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For the case m = 0 we get from Equations (2.13), (2,14) and (2.8) that

X =4 —2L (2.15)

!
!
and

e, = VO (Z1)]
' 2L

Now, using Taylor series expansion of y(a) about xi as

Aa) = x; +E;) = (x;) +E; y’(xl~)+ 5 £71"()=0

£ (2.16)

dividing by y; and then using Equation (2.15) we obtain

€14 = — — 52 Y §) (Z) (2.17)
2 Vi

From Equation (2.17) it is clear that terms in y'(x) in Equation (2.16) can be
cancelled as if { = {; = x;. So the error for the familiar Newton-Raphson iter-
ative method (Equation 2.15) is that given by Equation (2.17). This result equal-
ly applied well for any iterative formula of order p (say) by putting in the cor-
respondlng error formula the x; for the arguments of @, for every j = 0,1,2, ...,

— 1 and putting { as the argument of Y.

For the case m = 1 we get

.0 (2) O
Sed s L > (2.18)

and according to the above note we have for the error term the expression;

Hio 2 f 3 H
E41 = %Bﬁ_‘ﬂ - gy—((]))g & (2.19)

Let us write Equation (2.18) as

|
Xip) =X =yt 5 Y o =X -

_ Yi 1 Yi
K+l =X~ (@) I
- +1y, (Z)D e Zy,y(z)/yl(l)
3720008

which is the known Halley’s formulael?].

Finally, it should be added that, an iterative formula of an integral order p
(say) could be written in a suitable recurrence formula as

X =X+ 51.’,1 ; i=01,...,n=23,...,p (2.20)
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where
O;n=0 1 +7, ; n23 (2.21)
&p=-21 (2.22)
:
-1
= G e (2.23)

A

Literal analytical expressions of T, for iterative formulae of orders n = 3,4,8 are
listed in Appendix 1, while in Appendix 2, the corresponding error formulae of
Equation (2.14) are given.

Numerical Application

To illustrate the above formulations we consider the numerical solution of the
fundamental equation of space dynamics known as Kepler’s equation

WEY=E—-e sin E-M =0 (3.1)

This equation allows us to determine the relation of the time and angular dis-
placement within an elliptic orbit.

Kepler’s equation is transcendental equation in the eccentric anomaly F, as-
suming that the mean anomaly M and the eccentricity (0 < e [1) are given. It is
known that £ considered as a function of M is convex up and monotically in-
creasing, also Kepler’s Equation (3.1) always has one and only one solution.

In the present section we shall refine the initial guess
Ey=M (3.2)

for the root of Kepler’s Equation (3.1) by using two iteration schemes p = 2,3
of Equation (2.20). These schemes are given explicitly by Equations (2.15)
(2.18) respectively. Now using Equation (3.1) in these two equations, we get for
the second order method (p = 2) the scheme
M—M,

Eo1=FL+—"rt
*l 1—¢ cos £

7 7

i) l‘=0,1,2|--- (3-3)

while for the third order method (p = 3) we get the scheme

iy ing 0 mw-wm O
M-M;, _ __esng M=M; o im0l (34
l-e cos £  2(1-e cos £) Bl—e cos 5;%

M;, = E;, —e sin E, (3.5)
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are listed in Table 1 for different values of M and e.

The numerical results of the two schemes for the solution of Equation (3.1)

TaBLe 1. Solution of Kepler’s equation using the second and third order methods.

Case I: M=307, e=0.5
I E(p=2) E(p=3) HE?) ME)
1 | 55.2632553252501500 | 52.8074571433474900 | 0.461158903131190 —.0003715901360579
2 | 52.8565495128700100 | 52.8270871676466000 .0005577128438041 —.0000000000039588
3] 52.8270914920880000 | 52.8270871678557400 .0000000818563447 .0000000000000010
4 | 52.8270871678558300 | 52.8270871678557400 .0000000000000017 .0000000000000010
51 52.8270871678557400 | 52.8270871678557400 .0000000000000010 .0000000000000010
Case2: M=30", e=0.7
I E(p=2) E (p=3) HE?) MEY)
1 | 80.9254149780700800 | 60.8100244089464500 .2098638174093505 —.0908684461105215
2 | 68.2001384880060800 | 66.8629123182475500 .0196163951869200 —.0003756129964443
31 66.9011901515155400 | 66.8880363324020100 .0001966542633666 —.000000000239091
4 | 66.8880376742279000 | 66.8880363340012400 .0000000200368666 .0000000000000000
5 | 66.8880363340012600 | 66.8880363340012400 .0000000000000002 .0000000000000000
Case3: M=600, =02
I E(p=2) E(p=3) HEP) ME
1 | 71.0265779084358500 | 70.8223820212425900 .0028703990281810 —.0000127753679361
2 | 70.8233597398489400 | 70.8232868147900900 .0000010296762848 .0000000000000000
3 1 70.8232868147994700 | 70.8232868147900900 .0000000000001324 .0000000000000000
4 | 70.8232868147900900 | 70.8232868147900900 .0000000000000000 .0000000000000000
5 | 70.8232868147900900 | 70.8232868147900900 .0000000000000000 .0000000000000000
Case4: M=60", e=0.5
I E(p=2) E (p=3) HE?) MEY)
1 | 93.0797337253075300 | 87.5664447710896100 | .0500894099201412 | —0.121093750671416
2 | 88.7235343898815400 | 88.6397695857317100 | .0009444606755318 | —0.000005413162159
3 | 88.6398484716030000 | 88.6398175679023400 .0000003487914860 .0000000000000000
4 | 88.6398175679065600 | 88.6398175679023400 .0000000000000476 .0000000000000000
5 1 88.6398175679023400 | 88.6398175679023400 .0000000000000000 .0000000000000000
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Case 5: M=607, e=0.8
I E(p=2) E(p=3) HE?) ME)
1 1126.1594674506151000 | 82.0531558168716800 .2084570192812542 —.2140287676793484
2 1106.3554996746224000 | 102.9440588572355000 | .0187586609088529 —.0139188676582960
3 1104.4181843862673000 | 104.3969198965817000 | .0002014942840806 —.0000021941298076
4 1104.3971514524429000 | 104.3971489574781000 | .0000000238987831 .0000000000000000
5 1104.3971489574781000 | 104.3971489574781000 | .0000000000000004 .0000000000000000
Case 6: M=75", e=0.2
! Ep=2) Ep=3) YE) )
1 | 55.2632553252501500 | 52.8074571433474900 .0461158903131190 —.0003715901360579
2 | 52.8565495128700100 | 52.827087167646600 .0005577128438041 —.0000000000039588
31 52.8270914920880000 | 52.8270871678557400 .0000000818563447 .0000000000000000
4 | 52.8270871678557400 | 52.8270871678557400 .0000000000000017 .0000000000000000
5 | 52.8270871678557400 | 52.8270871678557400 .0000000000000000 .0000000000000000

Finally, it should be noted that, in going from a program using the second or-

der method (p = 2) to one using the third order method (p = 3), only one addi-
tional instruction is needed. Also from Table 1, it is clear that, once the con-
vergence is well established, the number of correct figures is doubled for
successive iterates in the second order method, and tripartite in the third order
method.

All of the above mentioned facts are of course valid for higher order methods
p = 3. So one may now find a solution of y(x) = 0 of ten or even more digit ac-
curacy within at most two iterations by using higher order method.
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Appendix 1

Literal analytical expressions of T, for iterative schemes of orders n =34, ..., 8
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Appendix 2
Literal analytical expressions of the error formulae of iterative schemes of orders n = 2,3, ... 8
Order: 2
o 1P0 .
7+1 ) (1) /
Order: 3

SR/ (9)
Ei = { 5 ( J;(l) 2 ( } E
7
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